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Linear Bellman Completeness
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An MDP is Linear Bellman Complete w.r.t. a known feature map      if

Define 
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✓ : Computational and sample efficiency      ? : Sample efficiency only       Credit: Akshay Krishnamurthy 



Open problem:  Do efficient algorithms exist under linear BC?
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Our contribution:  They do when transitions are deterministic.
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*Golowich and Moitra (2024) solve the problem for a constant number of actions.



RLSVI

For 

For 

greedy policy w.r.t. 

Collect data w/ 

*Algorithm modified from original for presentation clarity. 8

Key Idea :       cancels out estimation error to achieve optimism

[Russo, 2019]
[Zanette et al., 2020]
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Non-linear Bayes optimal

❌Apply to Linear BC ?

Without clipping,          grows exponentially in h
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Key Observation



⇒         zeros the empirical risk

Key Observation

is deterministicDeterministic Transition

= 0

Null Space

Span of 

: orthogonal projection onto the span
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Error

is deterministic
⇒ 



Key Observation

For 

For 

greedy policy w.r.t. 

Collect data w/ 

1. Only explore in 
the null space
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2. Remove clipping



Span Argument
(1) All in Span (2) Some in Null Space
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Assume known reward

Fix t ∈ [T]

Optimism + Zero Empirical Risk

⇓
Regret is zero

increases by 1

Happens at most          times

Regret



Span Argument

Theorem (informal). If reward is known, we have 
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Theorem (informal). If reward is unknown, we have 

Standard reward 
learning

*We assume deterministic transitions but allow adversarial initial states.



Takeaway

1. When transition is deterministic, consider the span argument

2. Regardless, efficient RL under linear BC remains an open problem
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Thank you !


